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What is Physiologically Based Pharmacokinetic (PBPK) Modeling?
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What is Quantitative Structure-Activity Relationship (QSAR) modeling? m

Chemical QSAR : Chemical
Activity

Structure

“Molecular Descriptors” (Inputs) “Endpoint” (Outputs)

« Quantitative structure activity relationship analysis (QSAR): the study of the relationship between
chemical structure and biological properties of substances.

» These activities include absorption, distribution, metabolism, and excretion (ADME), as well as
toxicity properties.
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Machine Learning (ML) and Artificial Intelligence (Al)

 Atrtificial intelligence (Al) is a rapidly developing subdiscipline of
computer science with the goal of designing and creating machines
or computational models that can perform a variety of cognitive
tasks at a level comparable or even exceed human intelligence.

* |In this presentation, it mainly refers to the applications of various
machine learning methods in the prediction and evaluation of
chemical toxicokinetic (i.e., absorption, distribution, metabolism, and
excretion [ADME]) and toxicity properties.

« Machine learning (ML) is a subarea of artificial intelligence, and it
refers to mathematical or computer algorithms designed to teach or
train a computational model to solve a problem or perform complex
tasks based on some input parameters.

Image source: https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data




Applying ML and Al in Different Subject Areas of Toxicology

« Physiologically based pharmacokinetic (PBPK) modeling

« Quantitative structure-activity relationship (QSAR) modeling
« Adverse outcome pathway (AOP) analysis

« High-content image-based screening

« Toxicogenomics
CONTEMPORARY REVIEW

Machine Learning and Artificial Intelligence in

Toxicological Sciences
Zhoumeng Lin "' and Wei-Chun Chou @*"

‘Department of Environmental and Global Health, College of Public Health and Health Professions, University
of Florida, Gainesville, Florida 32610, USA; and 'Center for Environmental and Human Toxicology, University
of Flonda, Gainesville, Flonnda 32608, USA

To whom correspondence should be addressed at Department of Environmental and Global Health, College of Public Health and Health Professions,
University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA. E-mail: linzhoumeng@ufl edu.
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Commonly Used Machine Learning Methods in Toxicology

Table 1. A List of Machine Learning Methods Commeonly Used in Toxicological Research

Method

Brief Description

Supervised linear methods
Multiple linear regression

Naive Bayes classifier
Supervised nonlinear methods
k-nearest neighbors

Support vector machine

Decision trees

Ensemble learning
Random forest

Artificial neural networks
Backpropagation neural networks

Bayesian-regularized neural networks
Assodative neural networks
Deep neural networks

Unsupervised methods

Princdple component analysis

Kohonen's self-organizing maps

Use multiple explanatory variables to predict the outcome of a response variable with a multivari-
ate linear equation

Based on Bayes’ theorem with strong assumptions of conditional independence among molecular
descriptors (ie, explanatory variables)

Classify a test chemical by looking for the training chemicals with the nearest distance to it

Map molecular descriptor vectors into a higher dimensional feature space to build a maximal mar-
gin hyperplane to distinguish active (toxic) from inactive (nontoxic) chemicals

Each modelis a series of rules organized in the format of a tree containing a single root node and
any number of internal nodes and several leaf nodes. The path from the root to a leaf stands for
a sequence of classification niles predicting a toxicity endpoint for a given chemical

Combine several base models into a more predictive one. Popular types of ensemble modelingin-
clude bagging, random spaces, boosting, and stacking.

Combine the bagging with the random spaces approaches in application to decision trees base
models

All neurons are divided into 3 layers, with information flowing from the first layer of input neu-
rons to the second layer of hidden neurons, and then to the third layer of output neurons

Apply Bayesian methods to perform regularization so that the model complexity is balanced
against the accuracy of reprodudng training data

Apply ensemble learning to backpropagation neural networks

Artiidal neural networks with multiple hidden layers (also called deep learning)

Reduce the dimensionality of the data to only the first few principal components while preserving
as much of the data’s variation as possible

Map molecules from the original descriptor space onto a 2D grid of neurons. Similar molecules
will be mapped to the same closely located neurons in the grid

This table is based on the book chapter by Baskin (2018). Flease refer to Baskin (2018) for detailed description about each of the listed machine learning algorithms.

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. Toxicological Sciences, 189(1):7-19.




List of Studies using ML in QSAR Modeling to Predict Toxicity

Table 2. Representative Studies Integrating Machine Learning Approaches With Quantitative Structure-Activity Relationship Modeling

Best Machine leaming Method Training Dataset Endpoint Reference
Deep leaming (ie, DeepTox) 11 764 chemicals from Tox21 12 bioassays Mayr et al. (2016)
Ensemble extreme gradient 1003 chemicals Carcinogenicity Zhanget al (2017)

boosting
Random forest

Ensemble support vector
machine

Multitask neural networks and
graph convolutional networks

Extra trees

Ensemble model
Support vector machine

Deep leaming (ie, CapsCarcino)

Kemel-weighted local polyno-
mial approach

Meta ensembling of multitask
deep learning models (ie,
QuantitativeTox)

Deep leaming-based model-level
representations (1e, DeepCarc)

Extra trees

Support vector machine
A consensus model basedon 4
algorithms

Deep leaming

Random forest

Over 866 000 chemical proper-
ties’hazards

400 chemicals
1012 PFAS

Ower 1000 chemicals from differ-
ent databases

7385 chemicals

482 chemicals

1003 chemicals from CFDB

Hundreds of chemicals depend-
ing on the species

Hundreds to thousands of com-
pounds depending on the
endpoint

692 chemicals

Over 18 600 drug-bactenia
interactions
676 pesticides

1244 chemicals
31 chemicals with known or sus-

pected clinical skin toxicity
1476 food contact chemaicals

Acute oral and dermal toxicity,
eye and skin irntation, muta-
genicity, and skin sensitization

Agquatic acute toxicity

Bloactivity on 26 bloassays

Vanous toxicities

Acute toxicity in rats

Arute toxicity in fathead
minnow

Carcinogenicity

Acute aquatic toxicity

LDE,;] and LCE,U

Carcinogenicity

Gut bacterial growth

Acute contact toxicity on honey
bees

Prenatal developmental toxicity

Skin toxicity

Carcinogenicity

Luechtefeld et al. (2018)

Ad etal. (2019)
Chengand Ng (2019)
Puetal (2019)

Russoetal (2019)
Chen et al. (2020)

Wang et al. (2020)
Gajewlcz-Skretna et al (2021)

Karim et al. (2021)

Lietal (2021)
McCoubrey et al. (2021)
Xuetal (2021)
Ciallella et al. (2022)
Hu et al. (2022)

Wang et al. (2022)

CPDB, Carcinogenic Potency Database. LCs, and LDg, refer to the compound concentrations that kill half the members of the tested animal population, respectively.

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. Toxicological Sciences, 189(1):7-19.
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Studies That Used ML/AI to Predict ADME for Pharmaceutical Compounds

Table 2. A List of Representative Studies That Used Machine Learning and Artificial Intelligence Approaches in the Predictions of Absorption,

Distribution, Metaboelism, and Excretion Properties for Pharmaceutical Compounds

Society of
SOT ‘ Toxicology
OXEORD academic.oup.com/toxsci

Wei-Chun Chou ()", Zhoumeng Lin ()"

References N  Predict Target Descriptor Types Modeling Method Performance”
Absorption
Agatonovic-Kustrin 86 HIA 0D-3D theoretical descriptors ANN, RBF, GNN Training set: R? = 0.82; RMSE = 0.59
etal. (2001) Test set: RMSE=10.90
Deconinck et al. 67 HIA 1D-3D theoretical descriptors plus ~ MARS Whole data set: RMSE =7.2%;
(2007) one of Abraham'’s solvation Whole data set: R* = 0.93
parameters
Niwa (2003) 86 HIA 0D-1D theoretical descriptors GRNN, PNN Training set: RMSE =6.5
Test set: RMSE=22.8
Talevi et al. (2011) 120 HIA 0D-3D Dragon theoretical MLR, ANN, SVM Training set: R*= 0.8; RMSE=0.18
descriptors Test set: R?= 0.66; RMSE=0.21
Yan et al. (2008) 52 HIA Adriana Code and Cerius2 0D-2D GA, PLS, SVM Training set: R*= 0.66; RMSE =12.5
theoretical descriptors Test set: R?= 0.77; RMSE=16
Shen et al. (2010) 1593 HIA 1D-2D theoretical descriptors SVM Training set: Q=98.5%
Test set: Q =99%
Kamiya et al. 184 Papp Chemical descriptors (not specific SVM, PLS, RBF Whole data set: R =0.84-0.85
(2021b) descriptions)
Ghafourian et al. 310 HIA Atotal of 215 descriptors (not spe-  MLR Training set: RMSE = 14.54
(2012) cific descriptions) Test set: RMSE=23.84
Hou et al. (2007) 648 HIA 0D-2D theoretical descriptors MARS, GA Training set: R?=0.97.3
Test set: R?= 0.98
Wang et al. (2017) 970 HIA 2D-3D descriptors, molecular fin- RF Training set: SE= 0.89; SP = 0.85;
gerprints, and structural Q=0.89
fragments Test set: SE=0.88; SP=0.81; Q=0.87
Distribution
Antontsev et al. 21 Kp Not explained in the study BIOiSIM Test set: AFE=0.96 (Cimax), 0.89
(2021) (AUC), 0.69 (Vd); AAFE=1.2
(Cenax), 1.30 (AUC), 1.71 (Vd);
R2=0.99 (Cpnae), 0.98 (AUC), 0.99
(vd)
Golmohammadi 310 Kp 3D descriptors and molecular struc- SVM; GA, PLS Training set: R? = 0.98, RMSE = 0.117
etal. (2012) tural information Test set: R = 0.98, RMSE= 0.118
Liu et al. (2005) 208 Kp Constitutional, topological, geomet- SVM Training set: R? = 0.97, RMSE = 0.02
rical, electrostatic and quantum Test set: R = 0.974, RMSE = 0.0289
chemical descriptors
Yun et al. (2014) 122 Kp LogP, pKa, fu DT; RF Whole dataset: Q=72%

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14.

Toxicological Sciences, 2023, 191(1), 1-14

hitps://doi.org/10.1093/toxsci/kfac101
Advance Access Publication Date: 26 September 2022
Contemporary Review

Machine learning and artificial intelligence in
physiologically based pharmacokinetic modeling

'Department of Lnvironmental and Global Iealth, College of Public Iealth and Health Professions, University of Iorida, Gainesville, I'L 32610, USA
“Center for Environmental and Tuman Toxicology, University of Tlorida, Gainesville, T 32608, USA

“To whom correspondence should be addressed at Department of Environmental and Global Iealth, College of Public [ealth and IHealth Professions, University of
Torida, 1225 Center Drive, Gainesville, I'L 32610, USA. L mail: linzhoumeng@ufl.edu.
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Studies That Used ML/AI to Predict ADME for Pharmaceutical Compounds

Table 2.. (continued)

References N Predict Target Descriptor Types Modeling Method Performance”
Metabolic
Athersuch et al. 15 Classify the metabolic pathways of  PCA, PLS Whole data set: R =0.96, Q =77.5%
(2013) test compounds
Baranwal et al. 6669 Classify the metabolic pathways of RFand GCN Test set: Q=98.99%
(2020) test compounds
Jia et al. (2020) 5682 Classify the metabolic pathways of RF Whole data set: Q=94%
test compounds
Zhang et al. (2008) 44 Vinas Km Molecular fingerprints ANN Whole data set: R? = 0.6-0.9 (K,,), R®

=0.6-0.7 (Vinas), RMSE=0.3-0.5
(Kn), RMSE = 0.4-0.7 (Viyas)

Sarigiannis et al. 54 Vinaw Km Physicochemical properties based ANN, NLR Test set: R = 0.82 (K,,), R* = 0.99
(2017) on Abraham's solvation equation (Vinax)

Elimination
Hsiaoet al. (2013) 244 Clint Molecular fingerprints, physico- PLS, RF, PCA Whole data set: R> = 0.96; Q =48%

chemical properties, and 3D
quantum chemical descriptors

Iwata et al. (2021) 748 Clyotal The chemical structure was repre- DL Test data set: GMFE = 2.68
sented as graph data
Kosugi and Hosea 1114 Cliotal 2D SMARTS-based descriptors RF, RBF Whole data set: R = 0.55, RMSE=
(2020) 0.332
Paine et al. (2010) 349 Clienal 195 descriptors RF Training set: R? = 0.93, RMSE = 0.32
Test set: R = 0.63, RMSE=0.63
Paixaoetal.(2010) 112 Clipy 233 molecular descriptors ANN Training set: R? = 0.953,
RMSE=0.236
Test set: R = 0.804, RMSE = 0.544
Wang et al. (2019) 1352 Cliota 2D and 3D descriptors, and 49 SVM, GBM, XGBoost Training set: R = 0.882,
fingerprints. RMSE=0.239
Test set: R = 0.875, RMSE =0.103
Gombar and Hall 525 Cliot 89 descriptors calculated from elec- SVM, MLR Test set: R = 0.70
(2013) tro-topological state (E-state)
fingerprints

Abbreviations: AAFE, absolute average fold error; AFE, absolute fold error; ANN, artificial neural networks; Cliy;, intrinsic metabolic clearance; Clreqal, renal clearance;
Cliom, total plasma clearance; DL, deep learning; DT, decision tree; GA, generic algorithm; GBM, gradient boosting machine; GCN, graphical conventional network;
GMFE, geometric mean fold error; GNN, general neural network; GRNN, general regression neural network; F, oral bioavailability; HIA, human intestinal absorption; K,,,,
Michaelis constant; MARS, multivariate adaptive regression splines; MLR, multiple linear regression; NLR, nonlinear regression; Papp, apparent membrane permeabil-
ity coefficients; PCA, principle component analysis; PLS, partial least squares; PNN, probabilistic neural network; Q, prediction accuracy; R2 squared Pearson's correla-
tion coefficient; RBF, radial basis function; RF, random forest; RMSE, root-mean-square error; SVM, support vector machine; Vimay, maximal reaction rate; XGBoost,
eXtreme CGradient Boosting.

*The performance from the best model.

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14.
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Studies That Used ML/AI to Predict ADME for Nonpharmaceutical Compound

Table 3. A List of Representative Studies That Used Machine Leamning and Artificial Intelligence Approaches in the Predictions of Toxicokinetic
Parameters for Nonpharmaceutical Compounds|

References N Predict Target Descriptor Types Modeling Method Performance”
Wambaugh et al. (2015) 271 Transporter affinity NA RF NA
Ingle et al. (2016) 1651 Fub 2D molecular descriptors kNN, SVM, RF Training set: R” = 0.82;
RMSE=0.59
Test set: R = 0.51; RMSE =0.218
Watanabe et al. (2018) 2738 Fub 2D molecular descriptors kNN, SVM, RF,PLS  Test set: R? = 0.728; RMSE =0.145
Papa et al. (2018) 1000  Cliy,e 2-3D molecular descriptors  PLS Whole data set: R? = 0.80, RMSE=
0.62
Pradeep et al. (2020) 1487  Fub, Cli: 0-3D molecular descriptors  SVM, RF, ANN Fub:
Training set: R? = 0.56,
RMSE = 0.82;
Test set: RZ = 0.57, RMSE =0.80
Clint:
Training set: R? = —0.00,
RMSE = 0.46;
Test set: RZ = 0.16, RMSE =0.40
Dawson et al. (2021) 6484  Fub, Clin: 1-3D molecular descriptors ~ RF Fub:
Training set: R = 0.584,
RMSE = 0.206;
Test set: RZ = 0.591, RMSE =0.187
(Environment chemicals from
ToxCast)
Clint:
Test set: Q =0.55 (Class 1), 0.12
(Class 2), 0.90 (Class 3)
Yun et al. (2021) 818 Fub 2D molecular descriptors kNN, SVM, RF,PLS  Test set: R =0.52, Mean absolute
error=12.6

Abbreviations: ANN, artificial neural networks; Cli,, intrinsic metabolic clearance; PLS, partial least squares; PNN, probabilistic neural network; Q, prediction accuracy;

RZ, squared Pearson’s correlation coefficient; RF, random forest; RMSE, root mean square error; SVM, support vector machine.

*The performance from the best model.
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A List of Databases That Contains PK Data for Machine Learning Analysis

Table 1. A list of databases that contain pharmacokinetic data for machine learning analyses

Database name Number of PK parameters Description Website References

compounds

PK-DB 676 Cl, t1y2, AUC, Crax, PK-DEB is a comprehensive database, https://pk-db. Grzegorzewskl

Kel and PK time- which contains data from human com etal (2021)
courses data clinical trials and provides curated
PK information on characterisfics
of studied patient cohorts, applied
interventions, PK parameters, and
PK time-courses data.
PK/DB 1203 HIA F, fu, BBB, Vd, PK/DBis a robust database for PK www.pkdb. Moda et al.
Cl, tysz studies and in silico ADME predic- 1fsc.usp.br (2008)
tion.

PKKB 1685 HIA, fu, Vd, Cl, LD50 Pharmacokinetic Knowledge Base http://cadd. Cao etal.
(PKKB) 1s a comprehensive data- suda.edu. (2012)
base of PK and toxic properties for cn/admet
drugs.

e-Drug3D 1852 Vvd, Cl, ti/, PPB, F, e-Drug3D1s a database of 1852 FDA- https://che- Pihan et al

Cinax, and Tmax approved drugs with 3-D chemical moinfo. (2012)
structures and information on PK ipmc.cnrs.
parameters fr/MOLDB/
index.php

ChEMBL >1M Not available Open-access database contalning www.ebl.ac. Gaulton et al.
ADME and toxic information for uk/chembl/ (2012)
numerous drug-like compounds

Lombardo's database 1352 Vd, Cl, MRT, fu, ty2 A human intravenous PK data set Not available Lombardo
derived from the literature. etal (2018)

Wang's database 970 HIA A human intestinal absorption data Not available Wang et al.
set consists of 970 compounds, (2017)
and 9 different types of descrip-
tors.

CvT 144 PK time-course data A public database of chemical ime- https://github. Sayre etal
series concentration data for 144 com/ (2020)
environmentally relevant chemi- USEPA/
cals and their metabolites CompTox-

PK-CvTdb

Abbreviations: AUC, area under curve;
BBB, blood brain barrier; Cl,
clearance; Cmax, maximum
concentration; F, oral bioavailability; fu,
fraction unbound in plasma;

HIA, human intestinal absorption; Kel,
elimination rate; LD, lethal dose; MRT,
mean residence time; PK,
pharmacokinetic; PPB, plasma protein
binding; t1/2, terminal half-life; Tmax,
time to peak drug concentration; Vd,
volume of distribution.
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A List of Databases Relevant to Computational Toxicology

Table 3. A List of Databases Relevant to Computational Toxicology

Database Data Size® Data Type Reference
ACToR Over 800 000 compounds and 500 In vitro and in vive toxicity Judson et al. (2008)
000 assays
Biosolids list 726 chemical pollutants Concentration data in biosolids Richman etal (2022)
CEBS Over 11 000 compounds and 8000 Gene expression data Leaetal. (2017)
studies
ChEMBL 1.1 million bicassays, 1.8 million Literature data on binding, func- Gaulton et al. (2012)
compounds, over 15 million tion, and toxicity of drugs and
activities drug-like chemicals
Connectivity map Around 1300 compounds and Gene expression data Subramanian et al. (2017)
7000 genes
CTD Over 14 000 compounds, 42 000 Relationships among com- Davis et al. (2021)
genes, 6000 diseases pounds, genes, and diseases
DrugMatrix Around 600 drug molecules and Gene expression data Ganter et al. (2005)
10 000 genes
GEO Over 4300 subdata sets Microarray, next-generation se- Barrett et al. (2013)
quendng, and other forms of
high-throughput functional
genomics data
eNanoMapper Over 700 types of nanomaterials Diverse data types on nanomate- Jeliazkova et al. (2015)
rial physicochemical proper-
ties and safety
MoleculeNet Over 700 000 compounds Quantum mechanics, physical Wuetal. (2018)

Open TG-GATEs

PubChem

Pubvinas

REACH

RepDose

SEURAT

ToxicoDB
ToxNET

170 compounds

Over 111 million compounds,
1.39 million bicassays, and 293
million bicactivity data points

11 types of nanomaterials with
705 unique nanomaterials

21,405 unique substances with
information from 89,905
dossiers

364 compounds investigated in
1017 studies, resultingin 6,002
specific effects

Over 5500 cosmetic-type com-
pounds in the current COSMOS
database web portal

231 chemicals

Owver 50 000 environmental
chemicals from 16 resources

chemistry, biophysics, and
physiclogy

Gene expression data and
metadata

Toxicology, genomics, pharma-
cology, and literature data

Up to & physicochemical proper-

ties and/or bioactivities
Data submitted in European
Union chemical legislation

Repeat-dose study data in dogs,
mice, and rats

Animal toxicity data

Toxicogenomic data
Invitro and in vivo toxicity data

Igarashiet al. (2015)

Kim et al. (2021)

Yan et al. (2020)

Luechtefeld et al. (2016)

Bitsch et al. (2006)

Vinken et al. (2012)

Nair et al. (2020)
Fongeret al. (2000)

@ On the basis of live web counts or most recent
literature publications as of March 2022. ACToR,
Aggregated Computational Toxicology
Resource; CTD, Comparative

Toxicogenomics Database; CEBS, Chemical
Effects in Biological Systems; GEO, Gene
Expression Omnibus; Open TG-GATEs, a large-
scale toxicogenomic database; REACH,
Registration, Evaluation, Authorization, and
Restriction of Chemicals; SEURAT, Safety
Evaluation Ultimately Replacing Animal Testing;
ToxNET, Toxicology Data Network. This table
was adapted from Ciallella and Zhu (2019) with
permission from the publisher.
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Application 1: Al-based PBPK/QSAR in predicting ADME of chemicals E

Background Terminology

' The meat withdrawal period or milk discard time is the interval between the
: tlme of the last administration of a new animal drug and the time when the
. ' animal can be safely slaughtered for food or the milk can be safely consumed.

: The tolerance (or maximum residue limit [MRL]) is the maximum
' concentration of a marker residue, or other residue indicated for monitoring,
' that can legally remain in a specific edible tissue of a treated animal.

Extralabel drug use (ELDU) describes the use of an approved drug
'in @ manner that is not in accordance with the approved labeling,

: yet meets the conditions set forth by the Animal Medicinal Drug Use
' Clarification Act of 1994 (AMDUCA) and U.S. Food and Drug

' Administration (FDA) regulations.

 We use the term “withdrawal interval” when a drug is used extralabel.

' The challenge in this field is how to calculate withdrawal interval after
| extralabel drug use.

USDA National Residue Sample Results “Red Book”: https://www.fsis.usda.gov/wps/portal/fsis/topics/data-collection-and-reports/chemistry/Residue-Chemistry
USDA Economic Research Service Statistics & Information: https://www.ers.usda.gov/topics/animal-products/cattle-beef/statistics-information.aspx



Application 1: Al-based PBPK/QSAR in predicting ADME of chemicals

Food Animal Residue Avoidance Databank  FARAD's primary mission is to help
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Dr. Majid Jaberi-Douraki (Current PI)
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Application 1: Al-based PBPK/QSAR in predicting ADME of chemicals E

PK/PBPK Component of FARAD at UF

Physiologically Based Extrapolation & Tissue Residues &

Pharmacokinetic Data Pharmacokinetic Model Population Analysis Withdrawal Intervals

m ! I
| in. 1
::L-Fl“ Al' :
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Food Animal Residue Avoidance Databank TN . ‘
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| ]
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3 1 un
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3 g = est of
: M Liver IMKo al. 1993 L}
E 0.01 5 3 % =
¢ A I . 5
8% § oo E ot
€ Jdn
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Objective: To develop web-based computational models/platforms that allow FARAD responders
to easily calculate withdrawal intervals for drugs or other chemicals in different food animal species

Specific responsibilities:

« Develop PBPK and AI-QSAR models and web-based interfaces

* Provide pharmacokinetic and toxicokinetic support to other regional centers

« Provide advice on withdrawal intervals and potential food safety risk

* Provide training to FARAD responders on how to calculate withdrawal intervals 18



Application 1: Overview and timeline of our PK/PBPK models (KSU + UF) E

2014-2016

« Established methodology

+ Created PBPK models for
drugs in an average animal

» Ceftiofur, enrofloxacin,
flunixin, sulfamethazine

 Swine and Cattle
Lin et al. 2015. J Pharm Sci

Lin et al. 2016. Sci Rep
Lin et al. 2016. J Vet Pharmacol Ther

2016-2018

Improved the methodology
Monte Carlo simulation

Created PBPK models for
drugs in a diverse population
of animals

Penicillin G
Swine, beef cattle, dairy cows

Lin et al. 2017. Toxicol Sci
Li et al. 2017. Food Chem Toxicol
Li et al. 2018. Toxicol Sci

2018-2023
» Graphical user interface (GUI)
* Population PBPK models
* Penicillin G, flunixin, florfenicol, oxytetracycline, PFAS
« Physiological parameter database: cattle, swine, chickens,

turkeys, sheep, goats

» Other quantitative methods from FDA & EMA
Li et al. 2019. Arch Toxicol Li et al. 2021. J Vet Pharmacol Ther
Li et al. 2019. J Vet Pharmacol Ther Riad et al. 2021. Toxicol Sci
Bates et al. 2020. BMC Vet Res Chou et al. 2022. Toxicol Sci
Wang et al. 2021. J Vet Pharmacol Ther Yuan et al. 2022. Food Chem Toxicol
Lin et al. 2019. J Anim Sci Yuan et al. 2022. Regul Tox Pharmacol
Lin et al. 2020. J Vet Pharmacol Ther Chou et al. 2023. Food Chem Toxicol
Smith et al. 2020. Front Vet Sci Wu et al. 2023. Food Chem Toxicol

o2y U.S. FOOD & DRUG

ADMINISTRATION

EUROPEAN MEDICINES AGENCY

SCIENCE MEDICINES HEALTH

http://www.thecis.co.uk/theClS/images/ciscows_slider.jpg 19
http://www.nature.com/polopoly_fs/7.11560.1374594725!/image/Pigs.jpg_gen/derivatives/landscape_630/Pigs.jpg



Application 1: Penicillin G PBPK model in cattle and swine

& MainPlot

122 Model Parameters

Admin Site

. . Kdiss
Penicilline— ppG

Kiml Muscle

I e |

Rest of Body
< —

Fat
<< —

Venous Blood
Arterial Blood

Kidney
< —

Liver

Metabolites

Extralabel Withdrawal Interval Simulator

Parameters for Therapeutic
Scenario

Species

Beef Cattle -

Drug

Penicillin G -

Target tissue

Liver -

Administration route

im -

Dose level (mg/kg)

6.5

1U Converter (from IU to mg)
Dose interval (h)
24
Number of
administrations

5

Number of animials
1000

Tolerance or MRL

(ug/mL or ug/g)
0.05

Simulation time after
last administration

Extralabel Withdrawal Interval Plot

1e+01

- N\

1e-01

entration (ug/mL)

Conc:

le-02 ¥

1e-03 :

4 3 2 A 0 1 2 3 4 5 6 7 8

Time (Day)

& Download

9

10

1

12 13

14 15

S 1 Percentle
=50 Percentle

=93 Percentle

Li M, Gehring R, Riviere JE, Lin Z*. (2017). Development and application of a population physiologically based pharmacokinetic model for penicillin G in swine and cattle for food safety

assessment. Food and Chemical Toxicology, 107:74-87.

Li M, Gehring R, Riviere JE, Lin Z*. (2018). Probabilistic physiologically based pharmacokinetic model for penicillin G in milk from dairy cows following intramammary or intramuscular

administrations. Toxicological Sciences, 164(1):85-100.

Li M, Cheng YH, Chittenden JT, Baynes RE, Tell LA, Davis JL, Vickroy TW, Riviere JE, Lin Z*. (2019). Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods
for drug withdrawal interval determination with a mechanistic population-based interactive physiologically-based pharmacokinetic (iPBPK) modeling platform: example for flunixin meglumine
administration. Archives of Toxicology, 93(7):1865-1880. (Best Postdoctoral Publication Award, 2020 Society of Toxicology)
Halleran JL, Papich MG, Li M, Lin Z, Davis JL, Maunsell FP, Riviere JE, Baynes RE, Foster DM*. (2022). Update on withdrawal intervals following extralabel use of procaine penicillin G in
cattle and swine. Journal of the American Veterinary Medical Association, 260(1): 1-6.

20



Application 1: Physiological parameters for PBPK modeling in food animals

Available at FARAD website (http://farad.org/), click Resources, and then click “PBPK Physiological Parameters”

. 18388732723 | |

Physiological Parameters for PBPK Modeling in Food Animals

Animal

O Adult Cattle O Market-Age
O Calves o Growing
O Beef Cattle o Aged

o Male o Different Age Groups

O Female O Chicken

o Angus O Broiler

O Hereford O Laying Hens
o Dairy Cows O Turkey

O Jersey O Sheep

O Holstein O Market-Age
O Swine O Lambs

O Male O Goats

O Female

Parameter

O Organ Weight

O Cardiac Output

O Blood Flow

o Vascular Space Fraction
O Hematocrit

+ LiM, Wang YS, Elwell-Cuddy T, Baynes RE, Tell LA, Davis JL, Maunsell FP, Riviere JE, Lin Z. (2021). Physiological parameter values for physiologically based pharmacokinetic models in

food-producing animals. Part lll: Sheep and goat. Journal of Veterinary Pharmacology and Therapeutics, 44(4), 456-477. [Top Cited Article in this journal in 2022]

+ WangYS, Li M, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE, Lin Z. (2021). Physiological parameter values for physiologically based pharmacokinetic models in food-producing
animals. Part II: Chicken and turkey. Journal of Veterinary Pharmacology and Therapeutics, 44(4), 423-455. [Top Cited Article in this journal in 2022]

+ LinZ, LiM, Wang YS, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE. (2020). Physiological parameter values for physiologically based pharmacokinetic models in food-producing

animals. Part I: Cattle and Swine. Journal of Veterinary Pharmacology and Therapeutics, 43(5):385-420. [One of the Top 10 Most-Downloaded Articles of 2020 in this journal]


http://farad.org/

Application 1: Role of Al and PBPK in animal-derived food safety assessment E

* Long-term: Integration of Al with PBPK and/or QSAR/QSPR to predict PK properties of drugs

» Short-term: Build an AI-QSAR model to predict plasma half-life of animal drugs

UNIVERSIT

7 gl |
U

Extract Pharmacokinetic (PK) Data
* Plasma and tissue half-lives

* C(Clearance

* Other pharmacokinetic parameters
* Dosing regimens

Machine Learning and Artificial Intelligence Methods

. . Artificial Neural Network Deep Neural Network
Drugs/active Data Processing —
ingredients . Y‘z{.‘. ‘\\}\fv' W s
a 2 ﬁ TR R\ AV (@Y
B Ao Bagii Auamis Dabsa with reported Input layer: All data except half-lives .}‘.,""%1‘\‘,‘«}394‘\‘,7;’! Nz
. 0 Sote e Oy b
half-lives Output layer: Half-lives S R ¥

X
EXS g ASE AL

( @8 @7 X
\I’}“&"}A‘& v‘\\. X

Extract Cheminformatics data

* Molecular descriptors N . . .
«  Fingerprints QSAR: Quantitative structure-activity relationships

QSPR: Quantitative structure-property relationships
22



Application 1: Schematic workflow of the Al-based QSAR model

L L Y e e e e e e e L L T

( 1
I 1
: i
! Data curation :
i FARAD Data subset Final data and pre- !
! dataset selection subset processing !
| |

1

Filtering dataset to intravenous

’ route and plasma matrix
__________________________________________________________________________ datapoints = 2174

number of drugs = 617
number of species = 52

T

1

1

Training |
Molecular set ] Selecting six target food
\ animal species:
i
1
1
1
1
1
]

[4
1
1
1
1
)
i descriptors DEL L
|

1

1

1

|

splitting cattle, chicken, goats, sheep,
swine, and turkey
datapoints = 750
number of drugs = 248

calculation

Test set

; Removing the mixture, salts,

__________________________________________________________________________ plants, and hormones
datapoints = 702

number of drugs = 224

Model Applicability

1
1
1
1
1
1
1
Ny -» performance [=»| domain (AD I Selecting the
development validation P . (AD) ] maximum hgalf_,ives
evaluation assessment i \
I for each drug in
: each species
1

e e, b, datapoints = 341

f
1
1
]
i QSAR model Model
|
1
1
1
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Wu PY, et al., unpublished results from the Lin Lab at UF.



] All RDKit ECFP FCFP MACCS

Deseriptor
Model 5-fold CV Test 5-fold CV Test 5-fold CV Test 5-fold CV Test 5-fold CV Test
KNN

R2 0.21+0.25 0.21 0.09+0.11 0.09 0.15+0.15 0.24 0.16+0.16 0.25 0.01+0.07 0.11

RMSE 35.26£27.47 26.49 36.50+26.28 28.50 35.62+26.09 26.10 35.60+26.27 2590 37.32+25.39 28.12
RF

R2 0.05+0.10 0.12 0.01+0.07 0.12 0.05+0.06 0.12 0.09+0.10 0.17 0.04+0.05 0.20

RMSE 36.36£24.79 28.04 36.77+24.81 28.07 36.84+25.80 28.08 37.02+25.18 27.23 36.93+24.78 26.27
SVM

R2 0.25+0.26 0.09 0.23+0.27 0.21 0.33+0.31 0.09 0.34+0.31 0.09 0.35+0.29 0.16

RMSE 34.35+26.82 28.45 34.25+26.25 26.53 32.87+27.14 28.53 32.80+27.07 28.46 32.54+26.85 27.35
DNN

R2 0.82+0.19 0.67 0.85+0.21 0.40 0.46%0.31 0.44 0.82+0.24 0.49 0.61+0.23 0.43

RMSE 13.53+8.21 17.23 11.87+£10.73 23.24 28.46+13.39 22.30 11.01+898 21.31 22.91+8.86 22.66

CV: cross-validation
ECFP: extended-connectivity fingerprints, FCFP: functional-class fingerprints, MACCS: molecular ACCess system
kKNN: k-nearest neighbors, RF: random forest, SVM: support vector machine, DNN: deep neural network

Wu PY, et al., unpublished results from the Lin Lab at UF.
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Application 1: Preliminary results of the AI-QSAR model

UF AI-QSAR Dashboard

= C @ localhost:30

Al-QSAR

Dashboard
(® Single input Model Prediction
File input
Page_s Select the Drug Data
Prebuild Pages
Select Drug
7 Landing Albendazole (sulfone metabolite) v
CAS Number
75184-71-3
Select Species:
Select Species
Cattle v
Predict Half Life
Predicted Half Life:
( 6.71 hrs

Wu PY, et al., unpublished results from the Lin Lab at UF.



Application 2:
Al in Predicting Toxicity

26



Application 2: Al-based QSAR in predicting toxicity of chemicals E

Objective: To develop robust AI-QSAR models to predict human systemic/organ-
specific toxicity by using multitask deep learning QSAR modeling approaches

Shared Specific T P
Input hidden hidden Output Structluralll ?'mlla_nty _ . o
layer  layer layer layer (6.g., molecular fingerprints) Biological similarity
ot
Chemical a‘ o | @ Organ A
structure i '

) . Organ B

Biological
pathways

() || - OrganC |5

27
The figure on the left was modified from Lopez-Martinez and Picard, 2017. The figure on the right was adapted from a slide in Dr. Thomas Hartung’s 2023 AAPS Keynote Presentation.



Application 3:
Al-assisted PBPK Model for

Nanoparticle Risk Assessment
Cancer Nanomedicine

28



Drug
Photo delivery
ablation Bio-
therapy sensors

Biomedical
applications

Critical barriers to progress in this field

* Nanotoxicology: lack of robust computational tools to assess risk

« Nanomedicine: low delivery efficiency (<1%) to target tissues (i.e., tumor)

* Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. 2016. Nature Reviews Materials, 1, 16014.

Delivery efficiency of NPs to tumors based on studies

published each year

Year

5 10° 7

= ]

‘ai 10! 4 1 N

% 10° —_____5%__T___ 1 %_i\_ 1 __—_|__ =3

‘:-" .10—1_ l I =y ]: I J_

He

Q . |

& 1071 .

v Median

= 1073 1 0.7%ID

O

1G_4 [ I II\ [ [ [ I [ [ [ [

) n) S o ) My Vv e B e
S S Q o S N ~ N N N ~
A AD AT A DT AR AR AR AR DT 4D

» Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach.
ACS Nano. 2020;14(3):3075-3095. (Best Paper Award of the Year 2020 — Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)
* Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WIREs Nanomed Nanobiotechnol. 202%9

Nov:14(6):e1808.



Application 3: Al-assisted PBPK model for nanoparticles

PBPK Structure in tumor-bearing mice Nano-Tumor Database

~

( Literature search
Database: PubMed
Lung tissue _F;CS ;ier::,::ge: 2015/1/1-2018/9/4
= 5 _ » Nanoparticle delivery;
= L:teratlfre from CNR database Nanomaterial delivery
& h_ttp://mbs.med.utoranto.ca/cnr/ » Biodistribution; Pharmacokinetics
- s Time range: 2005/1/1 - 2015/6/30 > Mice; Rats
Spleen tissue PCs ] (n=118) > Tumor; Tumour
£——= - Language: English
Document type: Peer-reviewed journals
(n=1213)
\ /
|
Liver tissue PCs s h
[Combined results (n = 1331)] Excluded (n = 938)
* Duplicate with CNR database
g w0 l * Other nanomaterials not used for
g E rrrsemereen dardh cancer thsranostlcs or tumor delivery,
o " . @ . e.g., vaccine
a Kidney tissue PCs g i il e « Other administration routes, e.g.,
g Urine <--= o oral, intraperitoneal, subcutaneous,
g intratracheal, intratumoral, and etc.
o * Biodistribution data not reported in
> L the units of pg/g, %ID/g or %ID
Brain tissue [ Included (n = 393) ] * Tumor-bearing animals other than
E rodents (mice or rats)
;§ l * Pharmacokinetic or biodistribution
2 B j L data from healthy rodents
[} Manuscript review and application \. J
{of inclusion criteria ]
Muscle Excluded (n = 193)
tissue - l ¢ Less than 3 sampling time points
5 . 5] = « Not report applicable or convertible
,r' Nanopartlcle (NP) E ::n;:;'l:::a:;uz((;%)l delivered dose (in mg or mg/kg)
- /’ '_E’ Newly incorporated (110) * Data from tumor-bearing rats
Remaining PCs / Tumor cell *+ More than 1 tumor type per mouse

’ !
4
s

s
7 i
/ i Dendritic cell
J > PBPK simulation for tumor-bearing mice

> Sensitivity analysis
-
ﬁ Tumor MacroPhage » Subgroup analysis on tumor delivery efficiency
interstitium <€- > Regression analysis

Note: other cell types not shown here

Note: currently, this database contains 534 datasets from 297 studies published from 2005 to 2021.

tissue €-==

Computational modeling

Analysis

Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation
approach. ACS Nano, 14(3): 3075-3095. (Best Paper Award of the Year 2020 — Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Sectign in 2021)
Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice. ACS Nano.
2023 Oct 9. doi: 10.1021/acsnano.3c04037. Epub ahead of print. PMID: 37812732.



Application 3: Al-assisted PBPK model for nanoparticles

Our Own “Nano-Tumor Database” for Subsequent Analyses

CMR or New Ref. ID MNew Ref. Mo Type MAT TS cT TM  Shape log(HD) ZP DE(Tmax) DE(Tmax)_PK DE(24) DE(168) Max DE log(DE(Tmax)) log(DE(Tmax)_PK) log(DE(24)) log(DE(168)) log(Max DE) Conf. in Predict.
#1 Zhong et al. (2015) 1 Inorganic Gold Active Cervix  XH Rod 1.38 -18 2.06 197 1.6% 2.06 2.36 0.31 0.29 0.23 0.31 0.37 Y (R2=0.99)
#3 Goodrich et al. (2010} 2 Inorganic Gold Passive Colon AH Rod 1.43 4] 1.62 1.51 0.99 0.79 2.39 0.21 0.18 4] -0.1 0.38 ¥ (R2=0.99)
#4 Meyers et al. (2015) 3 Inorganic Gold Passive Brain XH Spherical 1.58 -5 2.99 3.61 6.64 2.99 7.44 0.48 0.58 0.82 0.48 0.87 Y (R2 =0.87)
#1 Meyers et al. (2015) 3 Inorganic Gold Active Brain XH Spherical 1.62 -5 2.83 2.85  3.27 2.83 4.18 0.45 0.45 0.51 0.45 0.62 ¥ (R2=0.87)
#5 Dam et al. (2015} 4 Inorganic Gold Active Breast XH Other 1.84 -9.3 0.74 0.64 042 1.67 1.77 -0.13 -0.19 -0.38 0.22 0.25 Y (R2=0.91)
#6 Sykes et al. (2014} 5 Inorganic Gold Active Skin X0 Spherical 1.69 -0.6 25.2 25.07 22.86 11 29.88 14 14 1.36 1.04 1.48 ¥ (R2=0.96)
#6 Sykes et al. (2014) 5 Inorganic Gold Active Skin X0 Spherical 1.78 -11 25.83 23.86 26.63 9.94  30.24 141 1.38 1.43 1 1.48 ¥ (R2 =0.96)
#6 Sykes et al. (2014) 5 Inorganic Gold Active Skin X0 Spherical 2 -9 24.4 21.37 26.87 8.77 29.78 1.39 1.33 143 0.94 1.47 ¥ (R2=0.96)
#6 Sykes et al. (2014} 5 Inorganic Gold Passive Skin X0 Spherical 1.67 -6.7 19.38 18.64 18.11 7.79 23.4 1.29 1.27 1.26 0.89 1.37 ¥ (R2=0.96)
#6 Sykes et al. (2014) 5 Inorganic Gold Passive Skin X0 Spherical 1.81 -15 14.63 14.28 14.71 547  17.52 117 1.15 117 0.74 1.24 ¥ (R2 =0.96)
#6 Sykes et al. (2014} 5 Inorganic Gold Passive Skin X0 Spherical 2.02 -10 12.17 11.19 11.98 4.53  14.77 1.09 1.05 1.08 0.66 1.17 ¥ (R2 =0.96)
#6 Sykes et al. (2014) 5 Inorganic Gold Active Skin X0 Spherical 2.24 -3 8.79 8.21 9.61 298 11.15 0.94 0.91 0.98 0.47 1.05 ¥ (R2 =0.986)
#6 Sykes et al. (2014} 5 Inorganic Gold Passive Skin XO  Spherical 2.22 -6 5.18 4.94  5.63 4.25 6.41 0.71 0.69 0.75 0.63 0.81 ¥ (R2=0.96)
#7 Hu et al. (2014) 6 Inorganic Gold Passive Brain XH Spherical 0.79 1.13 112 113 0.37 1.34 0.05 0.05 0.05 -0.43 0.13 Y (R2 =0.98)
#3 Razzak et al. (2013) 7 Inorganic Gold Passive Prostate XH Spherical 1.44 0.13 0.06 0.11 0.03 0.14 -0.89 -1.22 -0.96 -1.52 -0.85 N (R2=0.67)
#9 Liu et al. (2014) 8 Inorganic Gold Passive Cervix  XH Spherical 1.23 -9.8 1.24 113 102 0.76 1.55 0.09 0.05 0.01 -0.12 0.19 Y (R2 =0.94)
#9 Liu et al. (2014) 8 Inorganic Gold Passive Cervix  XH Spherical 1.43 -10.5 0.64 0.54 0.7 0.32 0.86 -0.19 -0.27 -0.15 -0.49 -0.07 Y (R2 =0.94)
#10 Cheng et al. (2014) 9 Inorganic Gold Active Brain XH Other 1.38 -21.3 1.63 1.57 1.58 0.65 1.87 0.21 0.2 0.2 -0.19 0.27 ¥ (R2=0.97)
#10 Cheng et al. (2014) 9 Inorganic Gold Passive Brain XH Other 141 21.7 0.61 0.5%  0.57 0.26 0.69 -0.21 -0.23 -0.24 -0.59 -0.16 Y (R2 =0.97)
#10 Cheng et al. (2014) 9 Inorganic Gold Passive Brain XH Other 1.32 246 0.55 0.51  0.54 0.22 0.61 -0.26 -0.25 -0.27 -0.66 -0.21 Y (R2 =0.97)
#10 Cheng et al. (2014) 9 Inorganic Gold Passive Brain XH Other 1.26 254 0.38 0.26 0.4 0.15 0.43 -0.42 -0.44 -0.4 -0.82 -0.37 Y (R2 =0.97)
#11 Zhang et al. (2015) 10 Inorganic Gold Active Stomach XH Spherical 0.79 -5 9.1 9.52 10.68 9.1 1246 0.96 0.98 1.03 0.96 1.1 Y (R2=0.82)
#12 Black et al. (2014) 11 Inorganic Gold Passive Breast AH  Spherical 1.4 ] 4.02 174 4.02 2.11 6.09 0.6 0.24 0.6 0.32 0.78 ¥ (R2 =0.99)
#12 Black et al. (2014} 11 Inorganic Gold Passive Breast AH Other 2.05 0 1.65 0.62 1.65 0.55 2.14 0.22 -0.21 0.22 -0.26 0.33 ¥ (R2=0.99)
#12 Black et al. (2014) 11 Inorganic Gold Passive Breast AH Plate 2.12 ] 1.23 0.46  1.23 0.37 1.46 0.09 -0.34 0.09 -0.43 0.16 Y (R2 =0.99)
#12 Black et al. (2014) 11 Inorganic Gold Passive Breast AH Rod 1.89 0 0.47 0.15 047 0.17 0.61 -0.33 -0.82 -0.33 -0.77 -0.21 Y (R2 =0.99)
#13 Liu et al. (2013} 12 Inorganic Gold Passive Breast XO  Spherical 0.74 4] 1.26 1.24 154 0.41 1.74 0.1 0.09 0.19 -0.39 0.24 ¥ (R2 =0.70)
#14 Karmani et al. (2013) 13 Inorganic Gold Active Skin X0 Spherical 1.43 2.25 2.23 1.53 2.25 2.52 0.35 0.35 0.18 0.35 0.4 Y (R2=0.97)
#15 Wang et al. (2012} 14 Inorganic Gold Passive Breast AH Other 1.8 10.2 2.67 245  2.67 0.8 3.07 0.43 0.39 0.43 -0.1 0.49 ¥ (R2 =0.99)
#15 Wang et al. (2012) 14 Inorganic Gold Passive Breast AH Other 1.98 18.7 0.48 0.44 048 0.14 0.52 -0.32 -0.36 -0.32 -0.85 -0.28 Y (R2 =10.99)
#16 Shah et al. (2012) 15 Inorganic Gold Passive Prostate XH Spherical 1.82 -2.6 0.67 0.64 0.67 0.21 0.79 -0.17 -0.19 -0.17 -0.68 -0.1 ¥ (R2=0.99)
#16 Shah et al. (2012) 15 Inorganic Gold Passive Prostate XH Spherical 1.8 -27.1 0.6 0.59 0.6 0.17 0.71 -0.22 -0.23 -0.22 -0.77 -0.15 Y (R2 =10.99)
#16 Shah et al. (2012) 15 Inorganic Gold Active Prostate XH Spherical 1.86 -2.8 0.61 0.55 0.61 0.21 0.85 -0.21 -0.26 -0.21 -0.68 -0.07 ¥ (R2 =0.99)

Note: By 2020, this database contains 376 datasets from 200 studies published from 2005 to 2018. By 2023, this database contains 535 datasets from 298 studies published from 2005 to 2021.

+ Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z*. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation
approach. ACS Nano, 14(3): 3075-3095. (Best Paper Award of the Year 2020 — Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)
* ChenQ, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z*. (2023). Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice.

ACS Nano, in press.
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Application 3: Integration of Al with PBPK to predict tumor delivery efficiency E

A data-driven approach A hybrid approach

g Nano-Tamor Database physicoN;'lneﬁ:?‘lcll:::pemes Tumor Theoray Strategies
Physiologically Based PharmacokinetiC | g » ; ifimi : Evaluation of NP Biodistribution
‘ (PBPK) Modeling ’ Machine Learning and Artificial Intelligence PBPK model i tissnes i i s Anﬂ
* ] l : o Size C nd T . Targeting
— g — ’/l ’\ D b ancer type umor size S[FH[EgiES
| Cancer Nanomedicine | §§’ > i 1) " - 9 ® - o
g€ 2 £ @fv) - Shape
2 E Zacbted 3 * \ @
Input layer E = ,b:h‘ Ly ‘:«\» \
¥ oa o I S
Size e 77 Vi S ':fu icl
MAT X By el ag i, 1
S : B s ntl,
CR Al-assisted $ 2 Htely 1
TS el PBPK model & “eile ‘
CT o ! N Cancer Nanomedicine
™ o : ~ B) ALQSARmodel [ EEEEEEEEEEER E
P e - A% \‘-1--_—' : |
— & '
] Livee
| A A
Feces "
§ A "‘"’ g Predicted the critical tumor-related
o parameters (e.g., KTRES_max, '
. . .. .. I ~ Re-build model by KTRES_50, KTRES_n, KTRES_rel)
Lin Z, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere B byperparameter tuning
JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Predict the tisue biodistribution of Model performance checl: Adi-R’, RMSE

NPs and its tumor delivery efficiency

Machine Learning and Artificial Intelligence Approaches.

International Journal of Nanomedicine, 17:1365-1379. Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere

JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-
based pharmacokinetic model to predict nanoparticle delivery to
tumors in mice. Journal of Controlled Release, 361:53-63..
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« By leveraging machine learning and artificial intelligence approaches, now it is possible to:

(1) AI-QSAR models to predict ADME properties of hundreds of chemicals
(2) AlI-PBPK models for hundreds of chemicals
(3) AI-QSAR models to predict toxicity for a large number of chemicals

(4) Analyze a large amount of different types of data to generate new
insights into toxicity mechanisms rapidly, which was difficult by
manual approaches in the past.

« Several challenges should be considered:

ChatGPT is smart enough to pass the
MBA and USMLE tests... Is DABT
next?

(1) Evaluate different methods to determine the optimal approach

(2) Bbioactivity classification (yes/no) vs. the intensity of effect or dose-
response relationship

(3) Rigorous data quality check and infrastructure to store, share, 2023 Toxicology Forum Summer Meeting

analyze, evaluate, and manage big data

(4) User-friendly interfaces to facilitate applications of AI-QSAR/PBPK
models
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